There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4{x}^{((π - 1)(1 - sin(π)x)(π + 1))} + 4{(1 - x)}^{((π - 1)(1 - sin(π)x)(π + 1))} + {9}^{x} + {9}^{(1 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4{x}^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)} + 4(-x + 1)^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)} + {9}^{x} + {9}^{(-x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4{x}^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)} + 4(-x + 1)^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)} + {9}^{x} + {9}^{(-x + 1)}\right)}{dx}\\=&4({x}^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)}((-π^{2}sin(π) - π^{2}xcos(π)*0 + 0 + sin(π) + xcos(π)*0 + 0)ln(x) + \frac{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)(1)}{(x)})) + 4((-x + 1)^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)}((-π^{2}sin(π) - π^{2}xcos(π)*0 + 0 + sin(π) + xcos(π)*0 + 0)ln(-x + 1) + \frac{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)(-1 + 0)}{(-x + 1)})) + ({9}^{x}((1)ln(9) + \frac{(x)(0)}{(9)})) + ({9}^{(-x + 1)}((-1 + 0)ln(9) + \frac{(-x + 1)(0)}{(9)}))\\=&-4π^{2}{x}^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)}ln(x)sin(π) + 4{x}^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)}ln(x)sin(π) - 4π^{2}{x}^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)}sin(π) + \frac{4π^{2}{x}^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)}}{x} + 4{x}^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)}sin(π) - \frac{4{x}^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)}}{x} - 4π^{2}(-x + 1)^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)}ln(-x + 1)sin(π) + 4(-x + 1)^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)}ln(-x + 1)sin(π) + \frac{4π^{2}x(-x + 1)^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)}sin(π)}{(-x + 1)} - \frac{4π^{2}(-x + 1)^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)}}{(-x + 1)} - \frac{4x(-x + 1)^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)}sin(π)}{(-x + 1)} + \frac{4(-x + 1)^{(-π^{2}xsin(π) + π^{2} + xsin(π) - 1)}}{(-x + 1)} + {9}^{x}ln(9) - {9}^{(-x + 1)}ln(9)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!