There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{e^{0.0111(1 - \frac{x}{60})}}{(e^{0.0111(1 - \frac{20}{60})} + e^{0.0111(1 - \frac{x}{60})} + e^{0.0111(1 - \frac{60}{60})})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{-0.000185x + 0.0111}}{(e^{0.0074} + e^{-0.000185x + 0.0111} + e^{0})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{-0.000185x + 0.0111}}{(e^{0.0074} + e^{-0.000185x + 0.0111} + e^{0})}\right)}{dx}\\=&(\frac{-(e^{0.0074}*0 + e^{-0.000185x + 0.0111}(-0.000185 + 0) + e^{0}*0)}{(e^{0.0074} + e^{-0.000185x + 0.0111} + e^{0})^{2}})e^{-0.000185x + 0.0111} + \frac{e^{-0.000185x + 0.0111}(-0.000185 + 0)}{(e^{0.0074} + e^{-0.000185x + 0.0111} + e^{0})}\\=&\frac{0.000185e^{-0.000185x + 0.0111}e^{-0.000185x + 0.0111}}{(e^{0.0074} + e^{-0.000185x + 0.0111} + e^{0})(e^{0.0074} + e^{-0.000185x + 0.0111} + e^{0})} - \frac{0.000185e^{-0.000185x + 0.0111}}{(e^{0.0074} + e^{-0.000185x + 0.0111} + e^{0})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!