There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{π({x}^{2})({R}^{2})sqrt({R}^{2} - \frac{({x}^{2})({R}^{2})}{(4{π}^{2})})}{(12{π}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{12}R^{2}x^{2}sqrt(R^{2} - \frac{\frac{1}{4}R^{2}x^{2}}{π^{2}})}{π}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{12}R^{2}x^{2}sqrt(R^{2} - \frac{\frac{1}{4}R^{2}x^{2}}{π^{2}})}{π}\right)}{dx}\\=&\frac{\frac{1}{12}R^{2}*2xsqrt(R^{2} - \frac{\frac{1}{4}R^{2}x^{2}}{π^{2}})}{π} + \frac{\frac{1}{12}R^{2}x^{2}(0 - \frac{\frac{1}{4}R^{2}*2x}{π^{2}})*\frac{1}{2}}{π(R^{2} - \frac{\frac{1}{4}R^{2}x^{2}}{π^{2}})^{\frac{1}{2}}}\\=&\frac{R^{2}xsqrt(R^{2} - \frac{\frac{1}{4}R^{2}x^{2}}{π^{2}})}{6π} - \frac{R^{4}x^{3}}{48(R^{2} - \frac{\frac{1}{4}R^{2}x^{2}}{π^{2}})^{\frac{1}{2}}π^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!