There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{ln(sin(x) + 1)}{4} - \frac{ln(1 - sin(x))}{4}) + \frac{(sin(x) - 1)}{(4(1 + sin(x)))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{4}ln(sin(x) + 1) - \frac{1}{4}ln(-sin(x) + 1) + \frac{sin(x)}{(4sin(x) + 4)} - \frac{1}{(4sin(x) + 4)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{4}ln(sin(x) + 1) - \frac{1}{4}ln(-sin(x) + 1) + \frac{sin(x)}{(4sin(x) + 4)} - \frac{1}{(4sin(x) + 4)}\right)}{dx}\\=&\frac{\frac{1}{4}(cos(x) + 0)}{(sin(x) + 1)} - \frac{\frac{1}{4}(-cos(x) + 0)}{(-sin(x) + 1)} + (\frac{-(4cos(x) + 0)}{(4sin(x) + 4)^{2}})sin(x) + \frac{cos(x)}{(4sin(x) + 4)} - (\frac{-(4cos(x) + 0)}{(4sin(x) + 4)^{2}})\\=&\frac{cos(x)}{4(sin(x) + 1)} + \frac{cos(x)}{4(-sin(x) + 1)} - \frac{4sin(x)cos(x)}{(4sin(x) + 4)^{2}} + \frac{cos(x)}{(4sin(x) + 4)} + \frac{4cos(x)}{(4sin(x) + 4)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!