There are 1 questions in this calculation: for each question, the 1 derivative of m is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2sp}{(2st - 2ab)} - \frac{sq}{(2st - 2ab)} + \frac{ahm}{(2st - 2ab)} - \frac{akn}{(2st - 2ab)} - \frac{fs}{(2st - 2ab)} + \frac{hmb}{(2st - 2ab)} - \frac{bg}{(2st - 2ab)} + \frac{1}{2}\ with\ respect\ to\ m:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2sp}{(2st - 2ab)} - \frac{sq}{(2st - 2ab)} + \frac{ahm}{(2st - 2ab)} - \frac{akn}{(2st - 2ab)} - \frac{sf}{(2st - 2ab)} + \frac{bhm}{(2st - 2ab)} - \frac{bg}{(2st - 2ab)} + \frac{1}{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2sp}{(2st - 2ab)} - \frac{sq}{(2st - 2ab)} + \frac{ahm}{(2st - 2ab)} - \frac{akn}{(2st - 2ab)} - \frac{sf}{(2st - 2ab)} + \frac{bhm}{(2st - 2ab)} - \frac{bg}{(2st - 2ab)} + \frac{1}{2}\right)}{dm}\\=&2(\frac{-(0 + 0)}{(2st - 2ab)^{2}})sp + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})sq + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})ahm + \frac{ah}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})akn + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})sf + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})bhm + \frac{bh}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})bg + 0 + 0\\=&\frac{ah}{(2st - 2ab)} + \frac{bh}{(2st - 2ab)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!