There are 1 questions in this calculation: for each question, the 2 derivative of m is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (p - f)(\frac{1}{2} + \frac{(s(p - q) + a(hm - kn))}{(2(ts - ab))}) + (hm - g)(\frac{1}{2} + \frac{(t(hm - kn) + b(p - q))}{(2(ts - ab))})\ with\ respect\ to\ m:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}p - \frac{psq}{(2st - 2ab)} + \frac{p^{2}s}{(2st - 2ab)} + \frac{pahm}{(2st - 2ab)} - \frac{pakn}{(2st - 2ab)} - \frac{1}{2}f - \frac{pfs}{(2st - 2ab)} + \frac{fsq}{(2st - 2ab)} - \frac{fahm}{(2st - 2ab)} + \frac{fakn}{(2st - 2ab)} + \frac{1}{2}hm + \frac{h^{2}tm^{2}}{(2st - 2ab)} - \frac{hkntm}{(2st - 2ab)} + \frac{phbm}{(2st - 2ab)} - \frac{qhbm}{(2st - 2ab)} - \frac{1}{2}g - \frac{htgm}{(2st - 2ab)} + \frac{kntg}{(2st - 2ab)} - \frac{pbg}{(2st - 2ab)} + \frac{qbg}{(2st - 2ab)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}p - \frac{psq}{(2st - 2ab)} + \frac{p^{2}s}{(2st - 2ab)} + \frac{pahm}{(2st - 2ab)} - \frac{pakn}{(2st - 2ab)} - \frac{1}{2}f - \frac{pfs}{(2st - 2ab)} + \frac{fsq}{(2st - 2ab)} - \frac{fahm}{(2st - 2ab)} + \frac{fakn}{(2st - 2ab)} + \frac{1}{2}hm + \frac{h^{2}tm^{2}}{(2st - 2ab)} - \frac{hkntm}{(2st - 2ab)} + \frac{phbm}{(2st - 2ab)} - \frac{qhbm}{(2st - 2ab)} - \frac{1}{2}g - \frac{htgm}{(2st - 2ab)} + \frac{kntg}{(2st - 2ab)} - \frac{pbg}{(2st - 2ab)} + \frac{qbg}{(2st - 2ab)}\right)}{dm}\\=&0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})psq + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})p^{2}s + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})pahm + \frac{pah}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})pakn + 0 + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})pfs + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fsq + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fahm - \frac{fah}{(2st - 2ab)} + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fakn + 0 + \frac{1}{2}h + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})h^{2}tm^{2} + \frac{h^{2}t*2m}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})hkntm - \frac{hknt}{(2st - 2ab)} + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})phbm + \frac{phb}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})qhbm - \frac{qhb}{(2st - 2ab)} + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})htgm - \frac{htg}{(2st - 2ab)} + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})kntg + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})pbg + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})qbg + 0\\=&\frac{pah}{(2st - 2ab)} - \frac{fah}{(2st - 2ab)} + \frac{h}{2} + \frac{2h^{2}tm}{(2st - 2ab)} - \frac{hknt}{(2st - 2ab)} + \frac{phb}{(2st - 2ab)} - \frac{qhb}{(2st - 2ab)} - \frac{htg}{(2st - 2ab)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{pah}{(2st - 2ab)} - \frac{fah}{(2st - 2ab)} + \frac{h}{2} + \frac{2h^{2}tm}{(2st - 2ab)} - \frac{hknt}{(2st - 2ab)} + \frac{phb}{(2st - 2ab)} - \frac{qhb}{(2st - 2ab)} - \frac{htg}{(2st - 2ab)}\right)}{dm}\\=&(\frac{-(0 + 0)}{(2st - 2ab)^{2}})pah + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fah + 0 + 0 + 2(\frac{-(0 + 0)}{(2st - 2ab)^{2}})h^{2}tm + \frac{2h^{2}t}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})hknt + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})phb + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})qhb + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})htg + 0\\=&\frac{2h^{2}t}{(2st - 2ab)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!