There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (q - f)(\frac{1}{2} + \frac{(s(q - p) + a(kn - hm))}{(2(ts - ab))}) + (kn - g)(\frac{1}{2} + \frac{(t(kn - hm) + b(q - p))}{(2(ts - ab))})\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}q - \frac{qsp}{(2st - 2ab)} + \frac{q^{2}s}{(2st - 2ab)} + \frac{qakn}{(2st - 2ab)} - \frac{qahm}{(2st - 2ab)} - \frac{1}{2}f - \frac{qfs}{(2st - 2ab)} + \frac{fsp}{(2st - 2ab)} - \frac{fakn}{(2st - 2ab)} + \frac{fahm}{(2st - 2ab)} + \frac{1}{2}kn + \frac{k^{2}tn^{2}}{(2st - 2ab)} - \frac{khmtn}{(2st - 2ab)} + \frac{qkbn}{(2st - 2ab)} - \frac{pkbn}{(2st - 2ab)} - \frac{1}{2}g - \frac{ktgn}{(2st - 2ab)} + \frac{hmtg}{(2st - 2ab)} - \frac{qbg}{(2st - 2ab)} + \frac{pbg}{(2st - 2ab)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}q - \frac{qsp}{(2st - 2ab)} + \frac{q^{2}s}{(2st - 2ab)} + \frac{qakn}{(2st - 2ab)} - \frac{qahm}{(2st - 2ab)} - \frac{1}{2}f - \frac{qfs}{(2st - 2ab)} + \frac{fsp}{(2st - 2ab)} - \frac{fakn}{(2st - 2ab)} + \frac{fahm}{(2st - 2ab)} + \frac{1}{2}kn + \frac{k^{2}tn^{2}}{(2st - 2ab)} - \frac{khmtn}{(2st - 2ab)} + \frac{qkbn}{(2st - 2ab)} - \frac{pkbn}{(2st - 2ab)} - \frac{1}{2}g - \frac{ktgn}{(2st - 2ab)} + \frac{hmtg}{(2st - 2ab)} - \frac{qbg}{(2st - 2ab)} + \frac{pbg}{(2st - 2ab)}\right)}{dn}\\=&0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})qsp + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})q^{2}s + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})qakn + \frac{qak}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})qahm + 0 + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})qfs + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fsp + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fakn - \frac{fak}{(2st - 2ab)} + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fahm + 0 + \frac{1}{2}k + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})k^{2}tn^{2} + \frac{k^{2}t*2n}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})khmtn - \frac{khmt}{(2st - 2ab)} + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})qkbn + \frac{qkb}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})pkbn - \frac{pkb}{(2st - 2ab)} + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})ktgn - \frac{ktg}{(2st - 2ab)} + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})hmtg + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})qbg + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})pbg + 0\\=&\frac{qak}{(2st - 2ab)} - \frac{fak}{(2st - 2ab)} + \frac{k}{2} + \frac{2k^{2}tn}{(2st - 2ab)} - \frac{khmt}{(2st - 2ab)} + \frac{qkb}{(2st - 2ab)} - \frac{pkb}{(2st - 2ab)} - \frac{ktg}{(2st - 2ab)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!