There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{xg}{(2pr(0.9045 - 0.07249(r{\frac{1}{(\frac{x}{o})}}^{\frac{1}{3}} + 0.4293({r}^{2}{\frac{1}{(\frac{x}{o})}}^{(\frac{2}{3})}))))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{gx}{(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{gx}{(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)}\right)}{dx}\\=&(\frac{-(\frac{-0.14498pr^{2}o*-1}{x^{2}} - \frac{0.062239914pr^{2}o*-1}{x^{2}} + 0)}{(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)^{2}})gx + \frac{g}{(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)}\\=&\frac{-0.14498gpr^{2}o}{(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)x} - \frac{0.062239914gpr^{2}o}{(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)x} + \frac{g}{(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!