There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{({x}^{3} + 1)}{2})}^{(\frac{2}{3})} + \frac{{x}^{2}}{2} - \frac{{x}^{3}}{({({x}^{3} + 1)}^{\frac{1}{3}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{x^{3}}{(x^{3} + 1)^{\frac{1}{3}}} + (\frac{1}{2}x^{3} + \frac{1}{2})^{\frac{2}{3}} + \frac{1}{2}x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{x^{3}}{(x^{3} + 1)^{\frac{1}{3}}} + (\frac{1}{2}x^{3} + \frac{1}{2})^{\frac{2}{3}} + \frac{1}{2}x^{2}\right)}{dx}\\=& - (\frac{\frac{-1}{3}(3x^{2} + 0)}{(x^{3} + 1)^{\frac{4}{3}}})x^{3} - \frac{3x^{2}}{(x^{3} + 1)^{\frac{1}{3}}} + (\frac{\frac{2}{3}(\frac{1}{2}*3x^{2} + 0)}{(\frac{1}{2}x^{3} + \frac{1}{2})^{\frac{1}{3}}}) + \frac{1}{2}*2x\\=&\frac{x^{5}}{(x^{3} + 1)^{\frac{4}{3}}} - \frac{3x^{2}}{(x^{3} + 1)^{\frac{1}{3}}} + \frac{x^{2}}{(\frac{1}{2}x^{3} + \frac{1}{2})^{\frac{1}{3}}} + x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!