There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{x} - \frac{{{x}^{d}}^{x}}{(x{ln(x)}^{2}xlg(x){{{x}^{lg(x)}}^{ln(x)}}^{ln(x)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{x} - \frac{{{x}^{d}}^{x}{{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}}{x^{2}ln^{2}(x)lg(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{x} - \frac{{{x}^{d}}^{x}{{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}}{x^{2}ln^{2}(x)lg(x)}\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})) - \frac{-2{{x}^{d}}^{x}{{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}}{x^{3}ln^{2}(x)lg(x)} - \frac{({{x}^{d}}^{x}((1)ln({x}^{d}) + \frac{(x)(({x}^{d}((0)ln(x) + \frac{(d)(1)}{(x)})))}{({x}^{d})})){{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}}{x^{2}ln^{2}(x)lg(x)} - \frac{{{x}^{d}}^{x}({{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}((\frac{-1}{(x)})ln({{x}^{lg(x)}}^{ln(x)}) + \frac{(-ln(x))(({{x}^{lg(x)}}^{ln(x)}((\frac{1}{(x)})ln({x}^{lg(x)}) + \frac{(ln(x))(({x}^{lg(x)}((\frac{1}{ln{10}(x)})ln(x) + \frac{(lg(x))(1)}{(x)})))}{({x}^{lg(x)})})))}{({{x}^{lg(x)}}^{ln(x)})}))}{x^{2}ln^{2}(x)lg(x)} - \frac{{{x}^{d}}^{x}{{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}*-2}{x^{2}ln^{3}(x)(x)lg(x)} - \frac{{{x}^{d}}^{x}{{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}*-1}{x^{2}ln^{2}(x)lg^{2}(x)ln{10}(x)}\\=&{x}^{x}ln(x) + {x}^{x} + \frac{2{{x}^{d}}^{x}{{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}}{x^{3}ln^{2}(x)lg(x)} - \frac{{{x}^{d}}^{x}{{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}ln({x}^{d})}{x^{2}ln^{2}(x)lg(x)} - \frac{d{{x}^{d}}^{x}{{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}}{x^{2}ln^{2}(x)lg(x)} + \frac{{{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}{{x}^{d}}^{x}ln({{x}^{lg(x)}}^{ln(x)})}{x^{3}ln^{2}(x)lg(x)} + \frac{{{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}{{x}^{d}}^{x}ln({x}^{lg(x)})}{x^{3}ln(x)lg(x)} + \frac{{{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}{{x}^{d}}^{x}ln(x)}{x^{3}ln{10}lg(x)} + \frac{2{{x}^{d}}^{x}{{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}}{x^{3}ln^{3}(x)lg(x)} + \frac{{{x}^{d}}^{x}{{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}}{x^{3}ln{10}ln^{2}(x)lg^{2}(x)} + \frac{{{{x}^{lg(x)}}^{ln(x)}}^{(-ln(x))}{{x}^{d}}^{x}}{x^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!