There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{(300)*64{(800 - x)}^{2}{x}^{2}}{3*2({10}^{5})π({50}^{4})})}{(800)} + 300(\frac{1}{4000} + \frac{{(1 - \frac{x}{800})}^{2}}{10000} + \frac{xx}{5000*800*800})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{156250000000}x^{4}}{π} - \frac{\frac{1}{97656250}x^{3}}{π} + \frac{\frac{8}{1953125}x^{2}}{π} + \frac{9}{64000000}x^{2} - \frac{3}{40000}x + \frac{21}{200}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{156250000000}x^{4}}{π} - \frac{\frac{1}{97656250}x^{3}}{π} + \frac{\frac{8}{1953125}x^{2}}{π} + \frac{9}{64000000}x^{2} - \frac{3}{40000}x + \frac{21}{200}\right)}{dx}\\=&\frac{\frac{1}{156250000000}*4x^{3}}{π} - \frac{\frac{1}{97656250}*3x^{2}}{π} + \frac{\frac{8}{1953125}*2x}{π} + \frac{9}{64000000}*2x - \frac{3}{40000} + 0\\=&\frac{x^{3}}{39062500000π} - \frac{3x^{2}}{97656250π} + \frac{16x}{1953125π} + \frac{9x}{32000000} - \frac{3}{40000}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!