There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2arctan({(x + 1)}^{\frac{1}{2}}{\frac{1}{(1 - x)}}^{\frac{1}{2}}) + {(1 - x)}^{\frac{1}{2}}{(x + 1)}^{\frac{1}{2}} + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2arctan(\frac{(x + 1)^{\frac{1}{2}}}{(-x + 1)^{\frac{1}{2}}}) + (-x + 1)^{\frac{1}{2}}(x + 1)^{\frac{1}{2}} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2arctan(\frac{(x + 1)^{\frac{1}{2}}}{(-x + 1)^{\frac{1}{2}}}) + (-x + 1)^{\frac{1}{2}}(x + 1)^{\frac{1}{2}} + 1\right)}{dx}\\=&2(\frac{(\frac{(\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}})}{(-x + 1)^{\frac{1}{2}}} + (x + 1)^{\frac{1}{2}}(\frac{\frac{-1}{2}(-1 + 0)}{(-x + 1)^{\frac{3}{2}}}))}{(1 + (\frac{(x + 1)^{\frac{1}{2}}}{(-x + 1)^{\frac{1}{2}}})^{2})}) + (\frac{\frac{1}{2}(-1 + 0)}{(-x + 1)^{\frac{1}{2}}})(x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}}(\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}}) + 0\\=&\frac{1}{(x + 1)^{\frac{1}{2}}(-x + 1)^{\frac{1}{2}}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)} + 1)} + \frac{(x + 1)^{\frac{1}{2}}}{(-x + 1)^{\frac{3}{2}}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)} + 1)} - \frac{(x + 1)^{\frac{1}{2}}}{2(-x + 1)^{\frac{1}{2}}} + \frac{(-x + 1)^{\frac{1}{2}}}{2(x + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!