There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{{e}^{x}}{2})sqrt(1 + {e}^{(2x)}) + \frac{ln({e}^{x} + sqrt(1 + {e}^{(2x)}))}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}{e}^{x}sqrt({e}^{(2x)} + 1) + \frac{1}{2}ln({e}^{x} + sqrt({e}^{(2x)} + 1))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}{e}^{x}sqrt({e}^{(2x)} + 1) + \frac{1}{2}ln({e}^{x} + sqrt({e}^{(2x)} + 1))\right)}{dx}\\=&\frac{1}{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sqrt({e}^{(2x)} + 1) + \frac{\frac{1}{2}{e}^{x}(({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) + 0)*\frac{1}{2}}{({e}^{(2x)} + 1)^{\frac{1}{2}}} + \frac{\frac{1}{2}(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + \frac{(({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) + 0)*\frac{1}{2}}{({e}^{(2x)} + 1)^{\frac{1}{2}}})}{({e}^{x} + sqrt({e}^{(2x)} + 1))}\\=&\frac{{e}^{x}sqrt({e}^{(2x)} + 1)}{2} + \frac{{e}^{(3x)}}{2({e}^{(2x)} + 1)^{\frac{1}{2}}} + \frac{{e}^{x}}{2({e}^{x} + sqrt({e}^{(2x)} + 1))} + \frac{{e}^{(2x)}}{2({e}^{x} + sqrt({e}^{(2x)} + 1))({e}^{(2x)} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!