There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-10{x}^{2}}{({(\frac{1}{x} - 1)}^{2})} + \frac{353300{x}^{2}}{(e^{1.6258(\frac{1}{x} - 1)} - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-10x^{2}}{(\frac{1}{x} - 1)(\frac{1}{x} - 1)} + \frac{353300x^{2}}{(e^{\frac{1.6258}{x} - 1.6258} - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-10x^{2}}{(\frac{1}{x} - 1)(\frac{1}{x} - 1)} + \frac{353300x^{2}}{(e^{\frac{1.6258}{x} - 1.6258} - 1)}\right)}{dx}\\=&\frac{-10(\frac{-(\frac{-1}{x^{2}} + 0)}{(\frac{1}{x} - 1)^{2}})x^{2}}{(\frac{1}{x} - 1)} - \frac{10(\frac{-(\frac{-1}{x^{2}} + 0)}{(\frac{1}{x} - 1)^{2}})x^{2}}{(\frac{1}{x} - 1)} - \frac{10*2x}{(\frac{1}{x} - 1)(\frac{1}{x} - 1)} + 353300(\frac{-(e^{\frac{1.6258}{x} - 1.6258}(\frac{1.6258*-1}{x^{2}} + 0) + 0)}{(e^{\frac{1.6258}{x} - 1.6258} - 1)^{2}})x^{2} + \frac{353300*2x}{(e^{\frac{1.6258}{x} - 1.6258} - 1)}\\=&\frac{-10}{(\frac{1}{x} - 1)(\frac{1}{x} - 1)(\frac{1}{x} - 1)} - \frac{10}{(\frac{1}{x} - 1)(\frac{1}{x} - 1)(\frac{1}{x} - 1)} - \frac{20x}{(\frac{1}{x} - 1)(\frac{1}{x} - 1)} + \frac{574395.14e^{\frac{1.6258}{x} - 1.6258}}{(e^{\frac{1.6258}{x} - 1.6258} - 1)(e^{\frac{1.6258}{x} - 1.6258} - 1)} + \frac{706600x}{(e^{\frac{1.6258}{x} - 1.6258} - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!