There are 2 questions in this calculation: for each question, the 4 derivative of X is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ {X}^{x}\ with\ respect\ to\ X:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {X}^{x}\right)}{dX}\\=&({X}^{x}((0)ln(X) + \frac{(x)(1)}{(X)}))\\=&\frac{x{X}^{x}}{X}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{x{X}^{x}}{X}\right)}{dX}\\=&\frac{x*-{X}^{x}}{X^{2}} + \frac{x({X}^{x}((0)ln(X) + \frac{(x)(1)}{(X)}))}{X}\\=&\frac{-x{X}^{x}}{X^{2}} + \frac{x^{2}{X}^{x}}{X^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-x{X}^{x}}{X^{2}} + \frac{x^{2}{X}^{x}}{X^{2}}\right)}{dX}\\=&\frac{-x*-2{X}^{x}}{X^{3}} - \frac{x({X}^{x}((0)ln(X) + \frac{(x)(1)}{(X)}))}{X^{2}} + \frac{x^{2}*-2{X}^{x}}{X^{3}} + \frac{x^{2}({X}^{x}((0)ln(X) + \frac{(x)(1)}{(X)}))}{X^{2}}\\=&\frac{2x{X}^{x}}{X^{3}} - \frac{3x^{2}{X}^{x}}{X^{3}} + \frac{x^{3}{X}^{x}}{X^{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2x{X}^{x}}{X^{3}} - \frac{3x^{2}{X}^{x}}{X^{3}} + \frac{x^{3}{X}^{x}}{X^{3}}\right)}{dX}\\=&\frac{2x*-3{X}^{x}}{X^{4}} + \frac{2x({X}^{x}((0)ln(X) + \frac{(x)(1)}{(X)}))}{X^{3}} - \frac{3x^{2}*-3{X}^{x}}{X^{4}} - \frac{3x^{2}({X}^{x}((0)ln(X) + \frac{(x)(1)}{(X)}))}{X^{3}} + \frac{x^{3}*-3{X}^{x}}{X^{4}} + \frac{x^{3}({X}^{x}((0)ln(X) + \frac{(x)(1)}{(X)}))}{X^{3}}\\=&\frac{-6x{X}^{x}}{X^{4}} + \frac{11x^{2}{X}^{x}}{X^{4}} - \frac{6x^{3}{X}^{x}}{X^{4}} + \frac{x^{4}{X}^{x}}{X^{4}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ {x}^{X}{(ln(x))}^{4}\ with\ respect\ to\ X:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{X}ln^{4}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{X}ln^{4}(x)\right)}{dX}\\=&({x}^{X}((1)ln(x) + \frac{(X)(0)}{(x)}))ln^{4}(x) + \frac{{x}^{X}*4ln^{3}(x)*0}{(x)}\\=&{x}^{X}ln^{5}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {x}^{X}ln^{5}(x)\right)}{dX}\\=&({x}^{X}((1)ln(x) + \frac{(X)(0)}{(x)}))ln^{5}(x) + \frac{{x}^{X}*5ln^{4}(x)*0}{(x)}\\=&{x}^{X}ln^{6}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {x}^{X}ln^{6}(x)\right)}{dX}\\=&({x}^{X}((1)ln(x) + \frac{(X)(0)}{(x)}))ln^{6}(x) + \frac{{x}^{X}*6ln^{5}(x)*0}{(x)}\\=&{x}^{X}ln^{7}(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {x}^{X}ln^{7}(x)\right)}{dX}\\=&({x}^{X}((1)ln(x) + \frac{(X)(0)}{(x)}))ln^{7}(x) + \frac{{x}^{X}*7ln^{6}(x)*0}{(x)}\\=&{x}^{X}ln^{8}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!