There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ {X}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {X}^{x}\right)}{dx}\\=&({X}^{x}((1)ln(X) + \frac{(x)(0)}{(X)}))\\=&{X}^{x}ln(X)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {X}^{x}ln(X)\right)}{dx}\\=&({X}^{x}((1)ln(X) + \frac{(x)(0)}{(X)}))ln(X) + \frac{{X}^{x}*0}{(X)}\\=&{X}^{x}ln^{2}(X)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {X}^{x}ln^{2}(X)\right)}{dx}\\=&({X}^{x}((1)ln(X) + \frac{(x)(0)}{(X)}))ln^{2}(X) + \frac{{X}^{x}*2ln(X)*0}{(X)}\\=&{X}^{x}ln^{3}(X)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {X}^{x}ln^{3}(X)\right)}{dx}\\=&({X}^{x}((1)ln(X) + \frac{(x)(0)}{(X)}))ln^{3}(X) + \frac{{X}^{x}*3ln^{2}(X)*0}{(X)}\\=&{X}^{x}ln^{4}(X)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ {x}^{X}{(ln(x))}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{X}ln^{4}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{X}ln^{4}(x)\right)}{dx}\\=&({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{4}(x) + \frac{{x}^{X}*4ln^{3}(x)}{(x)}\\=&\frac{X{x}^{X}ln^{4}(x)}{x} + \frac{4{x}^{X}ln^{3}(x)}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{X{x}^{X}ln^{4}(x)}{x} + \frac{4{x}^{X}ln^{3}(x)}{x}\right)}{dx}\\=&\frac{X*-{x}^{X}ln^{4}(x)}{x^{2}} + \frac{X({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{4}(x)}{x} + \frac{X{x}^{X}*4ln^{3}(x)}{x(x)} + \frac{4*-{x}^{X}ln^{3}(x)}{x^{2}} + \frac{4({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{3}(x)}{x} + \frac{4{x}^{X}*3ln^{2}(x)}{x(x)}\\=&\frac{-X{x}^{X}ln^{4}(x)}{x^{2}} + \frac{X^{2}{x}^{X}ln^{4}(x)}{x^{2}} + \frac{8X{x}^{X}ln^{3}(x)}{x^{2}} - \frac{4{x}^{X}ln^{3}(x)}{x^{2}} + \frac{12{x}^{X}ln^{2}(x)}{x^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-X{x}^{X}ln^{4}(x)}{x^{2}} + \frac{X^{2}{x}^{X}ln^{4}(x)}{x^{2}} + \frac{8X{x}^{X}ln^{3}(x)}{x^{2}} - \frac{4{x}^{X}ln^{3}(x)}{x^{2}} + \frac{12{x}^{X}ln^{2}(x)}{x^{2}}\right)}{dx}\\=&\frac{-X*-2{x}^{X}ln^{4}(x)}{x^{3}} - \frac{X({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{4}(x)}{x^{2}} - \frac{X{x}^{X}*4ln^{3}(x)}{x^{2}(x)} + \frac{X^{2}*-2{x}^{X}ln^{4}(x)}{x^{3}} + \frac{X^{2}({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{4}(x)}{x^{2}} + \frac{X^{2}{x}^{X}*4ln^{3}(x)}{x^{2}(x)} + \frac{8X*-2{x}^{X}ln^{3}(x)}{x^{3}} + \frac{8X({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{3}(x)}{x^{2}} + \frac{8X{x}^{X}*3ln^{2}(x)}{x^{2}(x)} - \frac{4*-2{x}^{X}ln^{3}(x)}{x^{3}} - \frac{4({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{3}(x)}{x^{2}} - \frac{4{x}^{X}*3ln^{2}(x)}{x^{2}(x)} + \frac{12*-2{x}^{X}ln^{2}(x)}{x^{3}} + \frac{12({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{2}(x)}{x^{2}} + \frac{12{x}^{X}*2ln(x)}{x^{2}(x)}\\=&\frac{2X{x}^{X}ln^{4}(x)}{x^{3}} - \frac{3X^{2}{x}^{X}ln^{4}(x)}{x^{3}} - \frac{24X{x}^{X}ln^{3}(x)}{x^{3}} + \frac{X^{3}{x}^{X}ln^{4}(x)}{x^{3}} + \frac{12X^{2}{x}^{X}ln^{3}(x)}{x^{3}} + \frac{36X{x}^{X}ln^{2}(x)}{x^{3}} + \frac{8{x}^{X}ln^{3}(x)}{x^{3}} - \frac{36{x}^{X}ln^{2}(x)}{x^{3}} + \frac{24{x}^{X}ln(x)}{x^{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2X{x}^{X}ln^{4}(x)}{x^{3}} - \frac{3X^{2}{x}^{X}ln^{4}(x)}{x^{3}} - \frac{24X{x}^{X}ln^{3}(x)}{x^{3}} + \frac{X^{3}{x}^{X}ln^{4}(x)}{x^{3}} + \frac{12X^{2}{x}^{X}ln^{3}(x)}{x^{3}} + \frac{36X{x}^{X}ln^{2}(x)}{x^{3}} + \frac{8{x}^{X}ln^{3}(x)}{x^{3}} - \frac{36{x}^{X}ln^{2}(x)}{x^{3}} + \frac{24{x}^{X}ln(x)}{x^{3}}\right)}{dx}\\=&\frac{2X*-3{x}^{X}ln^{4}(x)}{x^{4}} + \frac{2X({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{4}(x)}{x^{3}} + \frac{2X{x}^{X}*4ln^{3}(x)}{x^{3}(x)} - \frac{3X^{2}*-3{x}^{X}ln^{4}(x)}{x^{4}} - \frac{3X^{2}({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{4}(x)}{x^{3}} - \frac{3X^{2}{x}^{X}*4ln^{3}(x)}{x^{3}(x)} - \frac{24X*-3{x}^{X}ln^{3}(x)}{x^{4}} - \frac{24X({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{3}(x)}{x^{3}} - \frac{24X{x}^{X}*3ln^{2}(x)}{x^{3}(x)} + \frac{X^{3}*-3{x}^{X}ln^{4}(x)}{x^{4}} + \frac{X^{3}({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{4}(x)}{x^{3}} + \frac{X^{3}{x}^{X}*4ln^{3}(x)}{x^{3}(x)} + \frac{12X^{2}*-3{x}^{X}ln^{3}(x)}{x^{4}} + \frac{12X^{2}({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{3}(x)}{x^{3}} + \frac{12X^{2}{x}^{X}*3ln^{2}(x)}{x^{3}(x)} + \frac{36X*-3{x}^{X}ln^{2}(x)}{x^{4}} + \frac{36X({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{2}(x)}{x^{3}} + \frac{36X{x}^{X}*2ln(x)}{x^{3}(x)} + \frac{8*-3{x}^{X}ln^{3}(x)}{x^{4}} + \frac{8({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{3}(x)}{x^{3}} + \frac{8{x}^{X}*3ln^{2}(x)}{x^{3}(x)} - \frac{36*-3{x}^{X}ln^{2}(x)}{x^{4}} - \frac{36({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln^{2}(x)}{x^{3}} - \frac{36{x}^{X}*2ln(x)}{x^{3}(x)} + \frac{24*-3{x}^{X}ln(x)}{x^{4}} + \frac{24({x}^{X}((0)ln(x) + \frac{(X)(1)}{(x)}))ln(x)}{x^{3}} + \frac{24{x}^{X}}{x^{3}(x)}\\=&\frac{-6X{x}^{X}ln^{4}(x)}{x^{4}} + \frac{11X^{2}{x}^{X}ln^{4}(x)}{x^{4}} + \frac{88X{x}^{X}ln^{3}(x)}{x^{4}} - \frac{6X^{3}{x}^{X}ln^{4}(x)}{x^{4}} - \frac{72X^{2}{x}^{X}ln^{3}(x)}{x^{4}} - \frac{216X{x}^{X}ln^{2}(x)}{x^{4}} + \frac{X^{4}{x}^{X}ln^{4}(x)}{x^{4}} + \frac{16X^{3}{x}^{X}ln^{3}(x)}{x^{4}} + \frac{72X^{2}{x}^{X}ln^{2}(x)}{x^{4}} + \frac{96X{x}^{X}ln(x)}{x^{4}} - \frac{24{x}^{X}ln^{3}(x)}{x^{4}} + \frac{132{x}^{X}ln^{2}(x)}{x^{4}} - \frac{144{x}^{X}ln(x)}{x^{4}} + \frac{24{x}^{X}}{x^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!