There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {{(tan(x)cos(x) + sin(x) - ln(x)cos(x) + {x}^{2} - x + lg(x))}^{x}}^{2} - \frac{{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))}^{sin(x)}arccos(x)}{arctan(x)} - ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))^{sin(x)}arccos(x)}{arctan(x)} + (cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))^{(2x)} - ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))^{sin(x)}arccos(x)}{arctan(x)} + (cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))^{(2x)} - ln(x)\right)}{dx}\\=& - \frac{(({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))^{sin(x)}((cos(x))ln({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x)) + \frac{(sin(x))(({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})) - cos(x)cos(x)tan(x) - sin(x)*-sin(x)tan(x) - sin(x)cos(x)sec^{2}(x)(1) - (\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}))}{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))}))arccos(x)}{arctan(x)} - \frac{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))^{sin(x)}(\frac{-(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{arctan(x)} - ({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))^{sin(x)}arccos(x)(\frac{-(1)}{arctan^{2}(x)(1 + (x)^{2})}) + ((cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))^{(2x)}((2)ln(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x)) + \frac{(2x)(-sin(x)tan(x) + cos(x)sec^{2}(x)(1) + cos(x) - \frac{cos(x)}{(x)} - ln(x)*-sin(x) + 2x - 1 + \frac{1}{ln{10}(x)})}{(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))})) - \frac{1}{(x)}\\=& - \frac{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))^{sin(x)}ln({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))cos(x)arccos(x)}{arctan(x)} - \frac{{2}^{x}({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))^{sin(x)}ln(2)sin(x)arccos(x)}{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))arctan(x)} + \frac{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))^{sin(x)}sin(x)cos^{2}(x)arccos(x)tan(x)}{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))arctan(x)} - \frac{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))^{sin(x)}sin^{3}(x)arccos(x)tan(x)}{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))arctan(x)} + \frac{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))^{sin(x)}sin^{2}(x)cos(x)arccos(x)sec^{2}(x)}{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))arctan(x)} + \frac{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))^{sin(x)}sin(x)arccos(x)}{(-x^{2} + 1)^{\frac{1}{2}}({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))arctan(x)} + \frac{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))^{sin(x)}}{(-x^{2} + 1)^{\frac{1}{2}}arctan(x)} + \frac{({2}^{x} - sin(x)cos(x)tan(x) - arcsin(x))^{sin(x)}arccos(x)}{(x^{2} + 1)arctan^{2}(x)} + 2(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))^{(2x)}ln(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x)) - \frac{2x(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))^{(2x)}sin(x)tan(x)}{(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))} + \frac{2x(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))^{(2x)}cos(x)sec^{2}(x)}{(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))} + \frac{2x(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))^{(2x)}cos(x)}{(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))} - \frac{2(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))^{(2x)}cos(x)}{(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))} + \frac{2x(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))^{(2x)}ln(x)sin(x)}{(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))} + \frac{2(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))^{(2x)}}{(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))ln{10}} + \frac{4x^{2}(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))^{(2x)}}{(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))} - \frac{2x(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))^{(2x)}}{(cos(x)tan(x) + sin(x) - ln(x)cos(x) + x^{2} - x + lg(x))} - \frac{1}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!