There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ sin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x)\right)}{dx}\\=&cos(x)\\=&cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cos(x)\right)}{dx}\\=&-sin(x)\\=&-sin(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -sin(x)\right)}{dx}\\=&-cos(x)\\=&-cos(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -cos(x)\right)}{dx}\\=&--sin(x)\\=&sin(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ {cos(x)}^{e}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {cos(x)}^{e}\right)}{dx}\\=&({cos(x)}^{e}((0)ln(cos(x)) + \frac{(e)(-sin(x))}{(cos(x))}))\\=&\frac{-{cos(x)}^{e}esin(x)}{cos(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-{cos(x)}^{e}esin(x)}{cos(x)}\right)}{dx}\\=&\frac{-({cos(x)}^{e}((0)ln(cos(x)) + \frac{(e)(-sin(x))}{(cos(x))}))esin(x)}{cos(x)} - \frac{{cos(x)}^{e}*0sin(x)}{cos(x)} - \frac{{cos(x)}^{e}ecos(x)}{cos(x)} - \frac{{cos(x)}^{e}esin(x)sin(x)}{cos^{2}(x)}\\=&\frac{{cos(x)}^{e}e^{2}sin^{2}(x)}{cos^{2}(x)} - \frac{{cos(x)}^{e}esin^{2}(x)}{cos^{2}(x)} - {cos(x)}^{e}e\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{{cos(x)}^{e}e^{2}sin^{2}(x)}{cos^{2}(x)} - \frac{{cos(x)}^{e}esin^{2}(x)}{cos^{2}(x)} - {cos(x)}^{e}e\right)}{dx}\\=&\frac{({cos(x)}^{e}((0)ln(cos(x)) + \frac{(e)(-sin(x))}{(cos(x))}))e^{2}sin^{2}(x)}{cos^{2}(x)} + \frac{{cos(x)}^{e}*2e*0sin^{2}(x)}{cos^{2}(x)} + \frac{{cos(x)}^{e}e^{2}*2sin(x)cos(x)}{cos^{2}(x)} + \frac{{cos(x)}^{e}e^{2}sin^{2}(x)*2sin(x)}{cos^{3}(x)} - \frac{({cos(x)}^{e}((0)ln(cos(x)) + \frac{(e)(-sin(x))}{(cos(x))}))esin^{2}(x)}{cos^{2}(x)} - \frac{{cos(x)}^{e}*0sin^{2}(x)}{cos^{2}(x)} - \frac{{cos(x)}^{e}e*2sin(x)cos(x)}{cos^{2}(x)} - \frac{{cos(x)}^{e}esin^{2}(x)*2sin(x)}{cos^{3}(x)} - ({cos(x)}^{e}((0)ln(cos(x)) + \frac{(e)(-sin(x))}{(cos(x))}))e - {cos(x)}^{e}*0\\=&\frac{-{cos(x)}^{e}e^{3}sin^{3}(x)}{cos^{3}(x)} + \frac{3{cos(x)}^{e}e^{2}sin(x)}{cos(x)} + \frac{3{cos(x)}^{e}e^{2}sin^{3}(x)}{cos^{3}(x)} - \frac{2{cos(x)}^{e}esin(x)}{cos(x)} - \frac{2{cos(x)}^{e}esin^{3}(x)}{cos^{3}(x)}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-{cos(x)}^{e}e^{3}sin^{3}(x)}{cos^{3}(x)} + \frac{3{cos(x)}^{e}e^{2}sin(x)}{cos(x)} + \frac{3{cos(x)}^{e}e^{2}sin^{3}(x)}{cos^{3}(x)} - \frac{2{cos(x)}^{e}esin(x)}{cos(x)} - \frac{2{cos(x)}^{e}esin^{3}(x)}{cos^{3}(x)}\right)}{dx}\\=&\frac{-({cos(x)}^{e}((0)ln(cos(x)) + \frac{(e)(-sin(x))}{(cos(x))}))e^{3}sin^{3}(x)}{cos^{3}(x)} - \frac{{cos(x)}^{e}*3e^{2}*0sin^{3}(x)}{cos^{3}(x)} - \frac{{cos(x)}^{e}e^{3}*3sin^{2}(x)cos(x)}{cos^{3}(x)} - \frac{{cos(x)}^{e}e^{3}sin^{3}(x)*3sin(x)}{cos^{4}(x)} + \frac{3({cos(x)}^{e}((0)ln(cos(x)) + \frac{(e)(-sin(x))}{(cos(x))}))e^{2}sin(x)}{cos(x)} + \frac{3{cos(x)}^{e}*2e*0sin(x)}{cos(x)} + \frac{3{cos(x)}^{e}e^{2}cos(x)}{cos(x)} + \frac{3{cos(x)}^{e}e^{2}sin(x)sin(x)}{cos^{2}(x)} + \frac{3({cos(x)}^{e}((0)ln(cos(x)) + \frac{(e)(-sin(x))}{(cos(x))}))e^{2}sin^{3}(x)}{cos^{3}(x)} + \frac{3{cos(x)}^{e}*2e*0sin^{3}(x)}{cos^{3}(x)} + \frac{3{cos(x)}^{e}e^{2}*3sin^{2}(x)cos(x)}{cos^{3}(x)} + \frac{3{cos(x)}^{e}e^{2}sin^{3}(x)*3sin(x)}{cos^{4}(x)} - \frac{2({cos(x)}^{e}((0)ln(cos(x)) + \frac{(e)(-sin(x))}{(cos(x))}))esin(x)}{cos(x)} - \frac{2{cos(x)}^{e}*0sin(x)}{cos(x)} - \frac{2{cos(x)}^{e}ecos(x)}{cos(x)} - \frac{2{cos(x)}^{e}esin(x)sin(x)}{cos^{2}(x)} - \frac{2({cos(x)}^{e}((0)ln(cos(x)) + \frac{(e)(-sin(x))}{(cos(x))}))esin^{3}(x)}{cos^{3}(x)} - \frac{2{cos(x)}^{e}*0sin^{3}(x)}{cos^{3}(x)} - \frac{2{cos(x)}^{e}e*3sin^{2}(x)cos(x)}{cos^{3}(x)} - \frac{2{cos(x)}^{e}esin^{3}(x)*3sin(x)}{cos^{4}(x)}\\=&\frac{{cos(x)}^{e}e^{4}sin^{4}(x)}{cos^{4}(x)} - \frac{6{cos(x)}^{e}e^{3}sin^{2}(x)}{cos^{2}(x)} - \frac{6{cos(x)}^{e}e^{3}sin^{4}(x)}{cos^{4}(x)} + \frac{14{cos(x)}^{e}e^{2}sin^{2}(x)}{cos^{2}(x)} - \frac{8{cos(x)}^{e}esin^{2}(x)}{cos^{2}(x)} + \frac{11{cos(x)}^{e}e^{2}sin^{4}(x)}{cos^{4}(x)} - \frac{6{cos(x)}^{e}esin^{4}(x)}{cos^{4}(x)} + 3{cos(x)}^{e}e^{2} - 2{cos(x)}^{e}e\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!