There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2arctan({({(9{x}^{2} - 12x + 5)}^{\frac{1}{2}} - 3x + 2)}^{\frac{1}{3}} + {(-{(9{x}^{2} - 12x + 5)}^{\frac{1}{2}} - 3x + 2)}^{\frac{1}{3}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2arctan(((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2arctan(((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}})\right)}{dx}\\=&2(\frac{((\frac{\frac{1}{3}((\frac{\frac{1}{2}(9*2x - 12 + 0)}{(9x^{2} - 12x + 5)^{\frac{1}{2}}}) - 3 + 0)}{((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}}}) + (\frac{\frac{1}{3}(-(\frac{\frac{1}{2}(9*2x - 12 + 0)}{(9x^{2} - 12x + 5)^{\frac{1}{2}}}) - 3 + 0)}{(-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}}}))}{(1 + (((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}})^{2})})\\=&\frac{6x}{(9x^{2} - 12x + 5)^{\frac{1}{2}}((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}}(((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}}(-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}}((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + ((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}} + 1)} - \frac{6x}{(9x^{2} - 12x + 5)^{\frac{1}{2}}(-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}}(((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}}(-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}}((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + ((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}} + 1)} - \frac{4}{(9x^{2} - 12x + 5)^{\frac{1}{2}}((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}}(((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}}(-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}}((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + ((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}} + 1)} + \frac{4}{(9x^{2} - 12x + 5)^{\frac{1}{2}}(-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}}(((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}}(-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}}((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + ((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}} + 1)} - \frac{2}{((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}}(((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}}(-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}}((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + ((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}} + 1)} - \frac{2}{(-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}}(((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}}(-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}}((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{1}{3}} + ((9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}} + (-(9x^{2} - 12x + 5)^{\frac{1}{2}} - 3x + 2)^{\frac{2}{3}} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!