There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 6{x}^{3}{(1 - x)}^{6} + 36{x}^{4}{(1 - x)}^{5} + 72{x}^{5}{(1 - x)}^{4} + 42{x}^{6}{(1 - x)}^{3} + 18{x}^{7}{(1 - x)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 6(-x + 1)^{6}x^{3} + 12x^{9} - 18x^{8} - 36x^{7} + 114x^{6} - 108x^{5} + 36x^{4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 6(-x + 1)^{6}x^{3} + 12x^{9} - 18x^{8} - 36x^{7} + 114x^{6} - 108x^{5} + 36x^{4}\right)}{dx}\\=&6(6(-x + 1)^{5}(-1 + 0))x^{3} + 6(-x + 1)^{6}*3x^{2} + 12*9x^{8} - 18*8x^{7} - 36*7x^{6} + 114*6x^{5} - 108*5x^{4} + 36*4x^{3}\\=&144x^{8} - 324x^{7} + 108x^{6} + 324x^{5} - 360x^{4} + 108x^{3} + 18(-x + 1)^{6}x^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!