There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{x}^{2}}{({({r}^{2} - {x}^{2})}^{(\frac{3}{2})})} + \frac{1}{({({r}^{2} - {x}^{2})}^{\frac{1}{2}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(r^{2} - x^{2})^{\frac{3}{2}}} + \frac{1}{(r^{2} - x^{2})^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(r^{2} - x^{2})^{\frac{3}{2}}} + \frac{1}{(r^{2} - x^{2})^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-3}{2}(0 - 2x)}{(r^{2} - x^{2})^{\frac{5}{2}}})x^{2} + \frac{2x}{(r^{2} - x^{2})^{\frac{3}{2}}} + (\frac{\frac{-1}{2}(0 - 2x)}{(r^{2} - x^{2})^{\frac{3}{2}}})\\=&\frac{3x^{3}}{(r^{2} - x^{2})^{\frac{5}{2}}} + \frac{3x}{(r^{2} - x^{2})^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!