There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ {x}^{2}{\frac{1}{e}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}{\frac{1}{e}}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}{\frac{1}{e}}^{x}\right)}{dx}\\=&2x{\frac{1}{e}}^{x} + x^{2}({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))\\=&2x{\frac{1}{e}}^{x} - x^{2}{\frac{1}{e}}^{x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ ln(x){\frac{1}{x}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x)}{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x)}{x^{2}}\right)}{dx}\\=&\frac{-2ln(x)}{x^{3}} + \frac{1}{x^{2}(x)}\\=&\frac{-2ln(x)}{x^{3}} + \frac{1}{x^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!