There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{-5}{13} + \frac{90x}{169})}^{2} + \frac{1}{2}{(\frac{8}{13} - \frac{144x}{169})}^{2} + \frac{1}{2}{(\frac{4}{13} - \frac{72x}{169})}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1620}{2197}x^{2} - \frac{180}{169}x + \frac{5}{13}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1620}{2197}x^{2} - \frac{180}{169}x + \frac{5}{13}\right)}{dx}\\=&\frac{1620}{2197}*2x - \frac{180}{169} + 0\\=&\frac{3240x}{2197} - \frac{180}{169}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!