There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(0.310194900225448 + 0.186577873417448)}{(1 + {(\frac{x}{56.4650740404908})}^{1.49324409256158})} - 0.186577873417448\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{0.310194900225448}{(0.0177100626713587x + 1)} + \frac{0.186577873417448}{(0.0177100626713587x + 1)} - 0.186577873417448\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{0.310194900225448}{(0.0177100626713587x + 1)} + \frac{0.186577873417448}{(0.0177100626713587x + 1)} - 0.186577873417448\right)}{dx}\\=&0.310194900225448(\frac{-(0.0177100626713587 + 0)}{(0.0177100626713587x + 1)^{2}}) + 0.186577873417448(\frac{-(0.0177100626713587 + 0)}{(0.0177100626713587x + 1)^{2}}) + 0\\=&\frac{-0.0054935711233}{(0.0177100626713587x + 1)(0.0177100626713587x + 1)} - \frac{0.00330430583131183}{(0.0177100626713587x + 1)(0.0177100626713587x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!