There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ arcsin(({e}^{(\frac{1}{2}x)}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arcsin({e}^{(\frac{1}{2}x)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin({e}^{(\frac{1}{2}x)})\right)}{dx}\\=&(\frac{(({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)})))}{((1 - ({e}^{(\frac{1}{2}x)})^{2})^{\frac{1}{2}})})\\=&\frac{{e}^{(\frac{1}{2}x)}}{2(-{e}^{x} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ arctan({({e}^{x} - 1)}^{(\frac{1}{2}x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan(({e}^{x} - 1)^{(\frac{1}{2}x)})\right)}{dx}\\=&(\frac{((({e}^{x} - 1)^{(\frac{1}{2}x)}((\frac{1}{2})ln({e}^{x} - 1) + \frac{(\frac{1}{2}x)(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 0)}{({e}^{x} - 1)})))}{(1 + (({e}^{x} - 1)^{(\frac{1}{2}x)})^{2})})\\=&\frac{({e}^{x} - 1)^{(\frac{1}{2}x)}ln({e}^{x} - 1)}{2(({e}^{x} - 1)^{x} + 1)} + \frac{x{e}^{x}({e}^{x} - 1)^{(\frac{1}{2}x)}}{2({e}^{x} - 1)(({e}^{x} - 1)^{x} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!