There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2({(2 - 3{x}^{2})}^{(\frac{3}{2})})}{27} - \frac{4({(2 - 3{x}^{2})}^{\frac{1}{2}})}{9}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2}{27}(-3x^{2} + 2)^{\frac{3}{2}} - \frac{4}{9}(-3x^{2} + 2)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2}{27}(-3x^{2} + 2)^{\frac{3}{2}} - \frac{4}{9}(-3x^{2} + 2)^{\frac{1}{2}}\right)}{dx}\\=&\frac{2}{27}(\frac{3}{2}(-3x^{2} + 2)^{\frac{1}{2}}(-3*2x + 0)) - \frac{4}{9}(\frac{\frac{1}{2}(-3*2x + 0)}{(-3x^{2} + 2)^{\frac{1}{2}}})\\=&\frac{-2(-3x^{2} + 2)^{\frac{1}{2}}x}{3} + \frac{4x}{3(-3x^{2} + 2)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!