There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{1}{2}(20 - q)q + \frac{1}{2}(20 - q + 8)(q - 8) - \frac{q{1}^{2}}{2} - 2(q - 8) - \frac{{(q - 8)}^{2}}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{3}{2}q^{2} + \frac{67}{2}q - 128\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{3}{2}q^{2} + \frac{67}{2}q - 128\right)}{dx}\\=& - 0 + 0 + 0\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!