There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln({(1 + x)}^{\frac{1}{2}} - {(1 - x)}^{\frac{1}{2}}{\frac{1}{(1 + x)}}^{\frac{1}{2}} + {(1 - x)}^{\frac{1}{2}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{-(-x + 1)^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + (x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{-(-x + 1)^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + (x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})\right)}{dx}\\=&\frac{(\frac{-(\frac{\frac{1}{2}(-1 + 0)}{(-x + 1)^{\frac{1}{2}}})}{(x + 1)^{\frac{1}{2}}} - (-x + 1)^{\frac{1}{2}}(\frac{\frac{-1}{2}(1 + 0)}{(x + 1)^{\frac{3}{2}}}) + (\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}}) + (\frac{\frac{1}{2}(-1 + 0)}{(-x + 1)^{\frac{1}{2}}}))}{(\frac{-(-x + 1)^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + (x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})}\\=&\frac{1}{2(-x + 1)^{\frac{1}{2}}(\frac{-(-x + 1)^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + (x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})(x + 1)^{\frac{1}{2}}} + \frac{(-x + 1)^{\frac{1}{2}}}{2(\frac{-(-x + 1)^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + (x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})(x + 1)^{\frac{3}{2}}} + \frac{1}{2(x + 1)^{\frac{1}{2}}(\frac{-(-x + 1)^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + (x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})} - \frac{1}{2(-x + 1)^{\frac{1}{2}}(\frac{-(-x + 1)^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + (x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!