There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln({(1 + x)}^{\frac{1}{2}} - {(1 - x)}^{\frac{1}{2}}) - ln({(1 + x)}^{\frac{1}{2}} + (1 - x)(\frac{1}{2}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}}) - ln((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}}) - ln((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})\right)}{dx}\\=&\frac{((\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}}) - (\frac{\frac{1}{2}(-1 + 0)}{(-x + 1)^{\frac{1}{2}}}))}{((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})} - \frac{((\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}}) - \frac{1}{2} + 0)}{((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})}\\=&\frac{1}{2(x + 1)^{\frac{1}{2}}((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})} + \frac{1}{2(-x + 1)^{\frac{1}{2}}((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})} - \frac{1}{2(x + 1)^{\frac{1}{2}}((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})} + \frac{1}{2((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!