There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ((3{x}^{2} + 1)({x}^{4} - 4{x}^{2}) - ({x}^{3} + x + 2)(4{x}^{3} - 8x)){\frac{1}{({x}^{4} - 4{x}^{2})}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-x^{6}}{(x^{4} - 4x^{2})^{2}} - \frac{7x^{4}}{(x^{4} - 4x^{2})^{2}} + \frac{4x^{2}}{(x^{4} - 4x^{2})^{2}} - \frac{8x^{3}}{(x^{4} - 4x^{2})^{2}} + \frac{16x}{(x^{4} - 4x^{2})^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-x^{6}}{(x^{4} - 4x^{2})^{2}} - \frac{7x^{4}}{(x^{4} - 4x^{2})^{2}} + \frac{4x^{2}}{(x^{4} - 4x^{2})^{2}} - \frac{8x^{3}}{(x^{4} - 4x^{2})^{2}} + \frac{16x}{(x^{4} - 4x^{2})^{2}}\right)}{dx}\\=&-(\frac{-2(4x^{3} - 4*2x)}{(x^{4} - 4x^{2})^{3}})x^{6} - \frac{6x^{5}}{(x^{4} - 4x^{2})^{2}} - 7(\frac{-2(4x^{3} - 4*2x)}{(x^{4} - 4x^{2})^{3}})x^{4} - \frac{7*4x^{3}}{(x^{4} - 4x^{2})^{2}} + 4(\frac{-2(4x^{3} - 4*2x)}{(x^{4} - 4x^{2})^{3}})x^{2} + \frac{4*2x}{(x^{4} - 4x^{2})^{2}} - 8(\frac{-2(4x^{3} - 4*2x)}{(x^{4} - 4x^{2})^{3}})x^{3} - \frac{8*3x^{2}}{(x^{4} - 4x^{2})^{2}} + 16(\frac{-2(4x^{3} - 4*2x)}{(x^{4} - 4x^{2})^{3}})x + \frac{16}{(x^{4} - 4x^{2})^{2}}\\=&\frac{8x^{9}}{(x^{4} - 4x^{2})^{3}} + \frac{40x^{7}}{(x^{4} - 4x^{2})^{3}} - \frac{6x^{5}}{(x^{4} - 4x^{2})^{2}} - \frac{144x^{5}}{(x^{4} - 4x^{2})^{3}} - \frac{28x^{3}}{(x^{4} - 4x^{2})^{2}} + \frac{64x^{3}}{(x^{4} - 4x^{2})^{3}} + \frac{8x}{(x^{4} - 4x^{2})^{2}} + \frac{64x^{6}}{(x^{4} - 4x^{2})^{3}} - \frac{256x^{4}}{(x^{4} - 4x^{2})^{3}} - \frac{24x^{2}}{(x^{4} - 4x^{2})^{2}} + \frac{256x^{2}}{(x^{4} - 4x^{2})^{3}} + \frac{16}{(x^{4} - 4x^{2})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!