There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{((sec(x))({e}^{x}) + 1)}{(({x}^{2})(log_{a}^{\frac{1}{({x}^{\frac{1}{3}})}}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{x}sec(x)}{x^{2}log(a, \frac{1}{x^{\frac{1}{3}}})} + \frac{1}{x^{2}log(a, \frac{1}{x^{\frac{1}{3}}})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{x}sec(x)}{x^{2}log(a, \frac{1}{x^{\frac{1}{3}}})} + \frac{1}{x^{2}log(a, \frac{1}{x^{\frac{1}{3}}})}\right)}{dx}\\=&\frac{-2{e}^{x}sec(x)}{x^{3}log(a, \frac{1}{x^{\frac{1}{3}}})} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sec(x)}{x^{2}log(a, \frac{1}{x^{\frac{1}{3}}})} + \frac{{e}^{x}(\frac{-(\frac{(\frac{\frac{-1}{3}}{x^{\frac{4}{3}}})}{(\frac{1}{x^{\frac{1}{3}}})} - \frac{(0)log_{a}^{\frac{1}{x^{\frac{1}{3}}}}}{(a)})}{{\left(log(a, \frac{1}{x^{\frac{1}{3}}})^{2}(ln(a))})sec(x)}{x^{2}} + \frac{{e}^{x}sec(x)tan(x)}{x^{2}log(a, \frac{1}{x^{\frac{1}{3}}})} + \frac{-2}{x^{3}log(a, \frac{1}{x^{\frac{1}{3}}})} + \frac{(\frac{-(\frac{(\frac{\frac{-1}{3}}{x^{\frac{4}{3}}})}{(\frac{1}{x^{\frac{1}{3}}})} - \frac{(0)log_{a}^{\frac{1}{x^{\frac{1}{3}}}}}{(a)})}{{\left(log(a, \frac{1}{x^{\frac{1}{3}}})^{2}(ln(a))})}{x^{2}}\\=&\frac{-2{e}^{x}sec(x)}{x^{3}log(a, \frac{1}{x^{\frac{1}{3}}})} + \frac{{e}^{x}sec(x)}{x^{2}log(a, \frac{1}{x^{\frac{1}{3}}})} + \frac{{e}^{x}sec(x)}{3x^{3}{\left(log(a, \frac{1}{x^{\frac{1}{3}}})^{2}ln(a)} + \frac{{e}^{x}tan(x)sec(x)}{x^{2}log(a, \frac{1}{x^{\frac{1}{3}}})} + \frac{1}{3x^{3}{\left(log(a, \frac{1}{x^{\frac{1}{3}}})^{2}ln(a)} - \frac{2}{x^{3}log(a, \frac{1}{x^{\frac{1}{3}}})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!