There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -(1 - (\frac{2x}{3}))log_{2}^{1 - (\frac{2x}{3})} - (\frac{2x}{3})log_{2}^{\frac{2x}{3}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -log_{2}^{\frac{-2}{3}x + 1} + \frac{2}{3}xlog_{2}^{\frac{-2}{3}x + 1} - \frac{2}{3}xlog_{2}^{\frac{2}{3}x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -log_{2}^{\frac{-2}{3}x + 1} + \frac{2}{3}xlog_{2}^{\frac{-2}{3}x + 1} - \frac{2}{3}xlog_{2}^{\frac{2}{3}x}\right)}{dx}\\=&-(\frac{(\frac{(\frac{-2}{3} + 0)}{(\frac{-2}{3}x + 1)} - \frac{(0)log_{2}^{\frac{-2}{3}x + 1}}{(2)})}{(ln(2))}) + \frac{2}{3}log_{2}^{\frac{-2}{3}x + 1} + \frac{2}{3}x(\frac{(\frac{(\frac{-2}{3} + 0)}{(\frac{-2}{3}x + 1)} - \frac{(0)log_{2}^{\frac{-2}{3}x + 1}}{(2)})}{(ln(2))}) - \frac{2}{3}log_{2}^{\frac{2}{3}x} - \frac{2}{3}x(\frac{(\frac{(\frac{2}{3})}{(\frac{2}{3}x)} - \frac{(0)log_{2}^{\frac{2}{3}x}}{(2)})}{(ln(2))})\\=&\frac{2}{3(\frac{-2}{3}x + 1)ln(2)} + \frac{2log_{2}^{\frac{-2}{3}x + 1}}{3} - \frac{4x}{9(\frac{-2}{3}x + 1)ln(2)} - \frac{2log_{2}^{\frac{2}{3}x}}{3} - \frac{2}{3ln(2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!