There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ a(xx) + bx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax^{2} + bx\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax^{2} + bx\right)}{dx}\\=&a*2x + b\\=&2ax + b\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ {x}^{(\frac{b}{a})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{(\frac{b}{a})}\right)}{dx}\\=&({x}^{(\frac{b}{a})}((0)ln(x) + \frac{(\frac{b}{a})(1)}{(x)}))\\=&\frac{b{x}^{(\frac{b}{a})}}{ax}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!