There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {arctan(e^{x} - 1)}^{\frac{1}{2}}(\frac{{(e^{x} - 1)}^{2}}{2} + e^{x} - 1) - \frac{{(e^{x} - 1)}^{\frac{3}{2}}}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}e^{{x}*{2}}arctan^{\frac{1}{2}}(e^{x} - 1) - \frac{1}{2}arctan^{\frac{1}{2}}(e^{x} - 1) - \frac{1}{3}(e^{x} - 1)^{\frac{3}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}e^{{x}*{2}}arctan^{\frac{1}{2}}(e^{x} - 1) - \frac{1}{2}arctan^{\frac{1}{2}}(e^{x} - 1) - \frac{1}{3}(e^{x} - 1)^{\frac{3}{2}}\right)}{dx}\\=&\frac{1}{2}*2e^{x}e^{x}arctan^{\frac{1}{2}}(e^{x} - 1) + \frac{1}{2}e^{{x}*{2}}(\frac{\frac{1}{2}(e^{x} + 0)}{arctan^{\frac{1}{2}}(e^{x} - 1)(1 + (e^{x} - 1)^{2})}) - \frac{1}{2}(\frac{\frac{1}{2}(e^{x} + 0)}{arctan^{\frac{1}{2}}(e^{x} - 1)(1 + (e^{x} - 1)^{2})}) - \frac{1}{3}(\frac{3}{2}(e^{x} - 1)^{\frac{1}{2}}(e^{x} + 0))\\=&e^{{x}*{2}}arctan^{\frac{1}{2}}(e^{x} - 1) + \frac{e^{{x}*{3}}}{4(e^{{x}*{2}} - 2e^{x} + 2)arctan^{\frac{1}{2}}(e^{x} - 1)} - \frac{e^{x}}{4(e^{{x}*{2}} - 2e^{x} + 2)arctan^{\frac{1}{2}}(e^{x} - 1)} - \frac{(e^{x} - 1)^{\frac{1}{2}}e^{x}}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!