There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{1}{2}e^{2x}arctan({(e^{x} - 1)}^{\frac{1}{2}}) - \frac{(e^{x} + 2)({(e^{x} - 1)}^{\frac{1}{2}})}{6}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}e^{2x}arctan((e^{x} - 1)^{\frac{1}{2}}) - \frac{1}{6}(e^{x} - 1)^{\frac{1}{2}}e^{x} - \frac{1}{3}(e^{x} - 1)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}e^{2x}arctan((e^{x} - 1)^{\frac{1}{2}}) - \frac{1}{6}(e^{x} - 1)^{\frac{1}{2}}e^{x} - \frac{1}{3}(e^{x} - 1)^{\frac{1}{2}}\right)}{dx}\\=&\frac{1}{2}e^{2x}*2arctan((e^{x} - 1)^{\frac{1}{2}}) + \frac{1}{2}e^{2x}(\frac{((\frac{\frac{1}{2}(e^{x} + 0)}{(e^{x} - 1)^{\frac{1}{2}}}))}{(1 + ((e^{x} - 1)^{\frac{1}{2}})^{2})}) - \frac{1}{6}(\frac{\frac{1}{2}(e^{x} + 0)}{(e^{x} - 1)^{\frac{1}{2}}})e^{x} - \frac{1}{6}(e^{x} - 1)^{\frac{1}{2}}e^{x} - \frac{1}{3}(\frac{\frac{1}{2}(e^{x} + 0)}{(e^{x} - 1)^{\frac{1}{2}}})\\=&e^{2x}arctan((e^{x} - 1)^{\frac{1}{2}}) + \frac{e^{2x}}{4(e^{x} - 1)^{\frac{1}{2}}} - \frac{e^{{x}*{2}}}{12(e^{x} - 1)^{\frac{1}{2}}} - \frac{(e^{x} - 1)^{\frac{1}{2}}e^{x}}{6} - \frac{e^{x}}{6(e^{x} - 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!