There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 3(115000 - x) - 115000{((\frac{(x)}{(30000)}))}^{\frac{-1}{2}}(\frac{(20)}{(15)})(\frac{(1)}{(2)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{\frac{230000}{3}*30000^{\frac{1}{2}}}{x^{\frac{1}{2}}} - 3x + 345000\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{\frac{230000}{3}*30000^{\frac{1}{2}}}{x^{\frac{1}{2}}} - 3x + 345000\right)}{dx}\\=& - \frac{\frac{230000}{3}*30000^{\frac{1}{2}}*\frac{-1}{2}}{x^{\frac{3}{2}}} - 3 + 0\\=&\frac{115000*30000^{\frac{1}{2}}}{3x^{\frac{3}{2}}} - 3\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!