There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{(2 - x)}{(5 - x)})}{(1 - {(\frac{(2 - x)}{(5 - x)})}^{2})} - \frac{(\frac{(2 + x)}{(5 + x)})}{(1 - {(\frac{(2 + x)}{(5 + x)})}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-x}{(-x + 5)(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)} - \frac{x}{(x + 5)(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)} + \frac{2}{(-x + 5)(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)} - \frac{2}{(x + 5)(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-x}{(-x + 5)(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)} - \frac{x}{(x + 5)(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)} + \frac{2}{(-x + 5)(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)} - \frac{2}{(x + 5)(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)}\right)}{dx}\\=&\frac{-(\frac{-(-1 + 0)}{(-x + 5)^{2}})x}{(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)} - \frac{(\frac{-(-(\frac{-2(-1 + 0)}{(-x + 5)^{3}})x^{2} - \frac{2x}{(-x + 5)^{2}} + 4(\frac{-2(-1 + 0)}{(-x + 5)^{3}})x + \frac{4}{(-x + 5)^{2}} - 4(\frac{-2(-1 + 0)}{(-x + 5)^{3}}) + 0)}{(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)^{2}})x}{(-x + 5)} - \frac{1}{(-x + 5)(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)} - \frac{(\frac{-(1 + 0)}{(x + 5)^{2}})x}{(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)} - \frac{(\frac{-(-(\frac{-2(1 + 0)}{(x + 5)^{3}})x^{2} - \frac{2x}{(x + 5)^{2}} - 4(\frac{-2(1 + 0)}{(x + 5)^{3}})x - \frac{4}{(x + 5)^{2}} - 4(\frac{-2(1 + 0)}{(x + 5)^{3}}) + 0)}{(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)^{2}})x}{(x + 5)} - \frac{1}{(x + 5)(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)} + \frac{2(\frac{-(-1 + 0)}{(-x + 5)^{2}})}{(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)} + \frac{2(\frac{-(-(\frac{-2(-1 + 0)}{(-x + 5)^{3}})x^{2} - \frac{2x}{(-x + 5)^{2}} + 4(\frac{-2(-1 + 0)}{(-x + 5)^{3}})x + \frac{4}{(-x + 5)^{2}} - 4(\frac{-2(-1 + 0)}{(-x + 5)^{3}}) + 0)}{(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)^{2}})}{(-x + 5)} - \frac{2(\frac{-(1 + 0)}{(x + 5)^{2}})}{(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)} - \frac{2(\frac{-(-(\frac{-2(1 + 0)}{(x + 5)^{3}})x^{2} - \frac{2x}{(x + 5)^{2}} - 4(\frac{-2(1 + 0)}{(x + 5)^{3}})x - \frac{4}{(x + 5)^{2}} - 4(\frac{-2(1 + 0)}{(x + 5)^{3}}) + 0)}{(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)^{2}})}{(x + 5)}\\=&\frac{-x}{(-x + 5)^{2}(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)} - \frac{2x^{3}}{(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)^{2}(-x + 5)^{4}} - \frac{2x^{2}}{(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)^{2}(-x + 5)^{3}} + \frac{12x^{2}}{(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)^{2}(-x + 5)^{4}} - \frac{2x^{2}}{(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)^{2}(x + 5)^{3}} + \frac{2x^{3}}{(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)^{2}(x + 5)^{4}} + \frac{x}{(x + 5)^{2}(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)} + \frac{12x^{2}}{(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)^{2}(x + 5)^{4}} + \frac{8x}{(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)^{2}(-x + 5)^{3}} - \frac{24x}{(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)^{2}(-x + 5)^{4}} - \frac{8x}{(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)^{2}(x + 5)^{3}} + \frac{24x}{(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)^{2}(x + 5)^{4}} + \frac{2}{(-x + 5)^{2}(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)} + \frac{2}{(x + 5)^{2}(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)} - \frac{1}{(-x + 5)(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)} - \frac{1}{(x + 5)(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)} + \frac{16}{(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)^{2}(-x + 5)^{4}} + \frac{16}{(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)^{2}(x + 5)^{4}} - \frac{8}{(\frac{-x^{2}}{(x + 5)^{2}} - \frac{4x}{(x + 5)^{2}} - \frac{4}{(x + 5)^{2}} + 1)^{2}(x + 5)^{3}} - \frac{8}{(\frac{-x^{2}}{(-x + 5)^{2}} + \frac{4x}{(-x + 5)^{2}} - \frac{4}{(-x + 5)^{2}} + 1)^{2}(-x + 5)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!