There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({(x + 5)}^{2})(\frac{{(x - 4)}^{1}}{3})}{(({(x + 2)}^{5})(\frac{{(x + 4)}^{1}}{2}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{2}{3}x^{3}}{(x + 2)^{5}(x + 4)} + \frac{4x^{2}}{(x + 2)^{5}(x + 4)} - \frac{10x}{(x + 2)^{5}(x + 4)} - \frac{\frac{200}{3}}{(x + 2)^{5}(x + 4)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{2}{3}x^{3}}{(x + 2)^{5}(x + 4)} + \frac{4x^{2}}{(x + 2)^{5}(x + 4)} - \frac{10x}{(x + 2)^{5}(x + 4)} - \frac{\frac{200}{3}}{(x + 2)^{5}(x + 4)}\right)}{dx}\\=&\frac{\frac{2}{3}(\frac{-5(1 + 0)}{(x + 2)^{6}})x^{3}}{(x + 4)} + \frac{\frac{2}{3}(\frac{-(1 + 0)}{(x + 4)^{2}})x^{3}}{(x + 2)^{5}} + \frac{\frac{2}{3}*3x^{2}}{(x + 2)^{5}(x + 4)} + \frac{4(\frac{-5(1 + 0)}{(x + 2)^{6}})x^{2}}{(x + 4)} + \frac{4(\frac{-(1 + 0)}{(x + 4)^{2}})x^{2}}{(x + 2)^{5}} + \frac{4*2x}{(x + 2)^{5}(x + 4)} - \frac{10(\frac{-5(1 + 0)}{(x + 2)^{6}})x}{(x + 4)} - \frac{10(\frac{-(1 + 0)}{(x + 4)^{2}})x}{(x + 2)^{5}} - \frac{10}{(x + 2)^{5}(x + 4)} - \frac{\frac{200}{3}(\frac{-5(1 + 0)}{(x + 2)^{6}})}{(x + 4)} - \frac{\frac{200}{3}(\frac{-(1 + 0)}{(x + 4)^{2}})}{(x + 2)^{5}}\\=&\frac{-10x^{3}}{3(x + 2)^{6}(x + 4)} - \frac{2x^{3}}{3(x + 4)^{2}(x + 2)^{5}} + \frac{2x^{2}}{(x + 4)(x + 2)^{5}} - \frac{20x^{2}}{(x + 2)^{6}(x + 4)} - \frac{4x^{2}}{(x + 4)^{2}(x + 2)^{5}} + \frac{8x}{(x + 4)(x + 2)^{5}} + \frac{50x}{(x + 2)^{6}(x + 4)} + \frac{10x}{(x + 4)^{2}(x + 2)^{5}} + \frac{200}{3(x + 4)^{2}(x + 2)^{5}} - \frac{10}{(x + 2)^{5}(x + 4)} + \frac{1000}{3(x + 2)^{6}(x + 4)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!