There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ R - \frac{Re}{(k{x}^{2}Iw)} + \frac{e}{(ktw{x}^{2} - I{w}^{2}x)} - \frac{IC}{(N(t - \frac{Iw}{x}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{Re}{kIwx^{2}} + R + \frac{e}{(kwtx^{2} - Iw^{2}x)} - \frac{IC}{(tN - \frac{IwN}{x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{Re}{kIwx^{2}} + R + \frac{e}{(kwtx^{2} - Iw^{2}x)} - \frac{IC}{(tN - \frac{IwN}{x})}\right)}{dx}\\=& - \frac{R*-2e}{kIwx^{3}} - \frac{R*0}{kIwx^{2}} + 0 + (\frac{-(kwt*2x - Iw^{2})}{(kwtx^{2} - Iw^{2}x)^{2}})e + \frac{0}{(kwtx^{2} - Iw^{2}x)} - (\frac{-(0 - \frac{IwN*-1}{x^{2}})}{(tN - \frac{IwN}{x})^{2}})IC + 0\\=&\frac{2Re}{kIwx^{3}} - \frac{2kwtxe}{(kwtx^{2} - Iw^{2}x)^{2}} + \frac{Iw^{2}e}{(kwtx^{2} - Iw^{2}x)^{2}} + \frac{I^{2}wCN}{(tN - \frac{IwN}{x})^{2}x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!