There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -cos(x)cos(sin(x))cos(2x) + sin(x)sin(sin(x))cos(x) - cos(x)cos(sin(x)) + 2sin(2x)sin(sin(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -cos(x)cos(sin(x))cos(2x) + sin(x)sin(sin(x))cos(x) - cos(x)cos(sin(x)) + 2sin(2x)sin(sin(x))\right)}{dx}\\=&--sin(x)cos(sin(x))cos(2x) - cos(x)*-sin(sin(x))cos(x)cos(2x) - cos(x)cos(sin(x))*-sin(2x)*2 + cos(x)sin(sin(x))cos(x) + sin(x)cos(sin(x))cos(x)cos(x) + sin(x)sin(sin(x))*-sin(x) - -sin(x)cos(sin(x)) - cos(x)*-sin(sin(x))cos(x) + 2cos(2x)*2sin(sin(x)) + 2sin(2x)cos(sin(x))cos(x)\\=&sin(x)cos^{2}(x)cos(sin(x)) + sin(sin(x))cos^{2}(x)cos(2x) + 2sin(2x)cos(sin(x))cos(x) + sin(x)cos(sin(x))cos(2x) + 2sin(2x)cos(x)cos(sin(x)) - sin^{2}(x)sin(sin(x)) + 2sin(sin(x))cos^{2}(x) + 4sin(sin(x))cos(2x) + sin(x)cos(sin(x))\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!