There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2cos(x)cos(xsin(x)) - sin(xsin(x))sin(2)(x) - 2xsin(xsin(x))sin(x)cos(x) - xsin(x)cos(xsin(x)) - x*2sin(xsin(x))cos(2)(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2cos(x)cos(xsin(x)) - 2xsin(xsin(x))sin(x)cos(x) - xsin(2)sin(xsin(x)) - xsin(x)cos(xsin(x)) - 2x^{2}sin(xsin(x))cos(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2cos(x)cos(xsin(x)) - 2xsin(xsin(x))sin(x)cos(x) - xsin(2)sin(xsin(x)) - xsin(x)cos(xsin(x)) - 2x^{2}sin(xsin(x))cos(2)\right)}{dx}\\=&2*-sin(x)cos(xsin(x)) + 2cos(x)*-sin(xsin(x))(sin(x) + xcos(x)) - 2sin(xsin(x))sin(x)cos(x) - 2xcos(xsin(x))(sin(x) + xcos(x))sin(x)cos(x) - 2xsin(xsin(x))cos(x)cos(x) - 2xsin(xsin(x))sin(x)*-sin(x) - sin(2)sin(xsin(x)) - xcos(2)*0sin(xsin(x)) - xsin(2)cos(xsin(x))(sin(x) + xcos(x)) - sin(x)cos(xsin(x)) - xcos(x)cos(xsin(x)) - xsin(x)*-sin(xsin(x))(sin(x) + xcos(x)) - 2*2xsin(xsin(x))cos(2) - 2x^{2}cos(xsin(x))(sin(x) + xcos(x))cos(2) - 2x^{2}sin(xsin(x))*-sin(2)*0\\=&-3sin(x)cos(xsin(x)) - 4sin(xsin(x))sin(x)cos(x) - 2xsin^{2}(x)cos(xsin(x))cos(x) - 2x^{2}sin(x)cos(xsin(x))cos^{2}(x) - x^{2}sin(2)cos(x)cos(xsin(x)) - xsin(2)sin(x)cos(xsin(x)) - sin(2)sin(xsin(x)) + x^{2}sin(xsin(x))sin(x)cos(x) - 2x^{2}sin(x)cos(xsin(x))cos(2) - 2x^{3}cos(x)cos(xsin(x))cos(2) + 3xsin(xsin(x))sin^{2}(x) - 4xsin(xsin(x))cos^{2}(x) - 4xsin(xsin(x))cos(2) - xcos(x)cos(xsin(x))\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!