There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({({a}^{2} + {b}^{2}{x}^{2})}^{\frac{1}{2}}) - ({({a}^{2} + {x}^{2}{(b - 1)}^{2})}^{\frac{1}{2}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (a^{2} + b^{2}x^{2})^{\frac{1}{2}} - (a^{2} + b^{2}x^{2} - 2bx^{2} + x^{2})^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (a^{2} + b^{2}x^{2})^{\frac{1}{2}} - (a^{2} + b^{2}x^{2} - 2bx^{2} + x^{2})^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(0 + b^{2}*2x)}{(a^{2} + b^{2}x^{2})^{\frac{1}{2}}}) - (\frac{\frac{1}{2}(0 + b^{2}*2x - 2b*2x + 2x)}{(a^{2} + b^{2}x^{2} - 2bx^{2} + x^{2})^{\frac{1}{2}}})\\=&\frac{b^{2}x}{(a^{2} + b^{2}x^{2})^{\frac{1}{2}}} - \frac{b^{2}x}{(a^{2} + b^{2}x^{2} - 2bx^{2} + x^{2})^{\frac{1}{2}}} + \frac{2bx}{(a^{2} + b^{2}x^{2} - 2bx^{2} + x^{2})^{\frac{1}{2}}} - \frac{x}{(a^{2} + b^{2}x^{2} - 2bx^{2} + x^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!