There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-(arctan(x))}{x} - ln(x{\frac{1}{(1 + {x}^{2})}}^{\frac{1}{2}}) - \frac{{(arctan(x))}^{2}}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-arctan(x)}{x} - ln(\frac{x}{(x^{2} + 1)^{\frac{1}{2}}}) - \frac{1}{2}arctan^{2}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-arctan(x)}{x} - ln(\frac{x}{(x^{2} + 1)^{\frac{1}{2}}}) - \frac{1}{2}arctan^{2}(x)\right)}{dx}\\=&\frac{--arctan(x)}{x^{2}} - \frac{(\frac{(1)}{(1 + (x)^{2})})}{x} - \frac{((\frac{\frac{-1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{3}{2}}})x + \frac{1}{(x^{2} + 1)^{\frac{1}{2}}})}{(\frac{x}{(x^{2} + 1)^{\frac{1}{2}}})} - \frac{1}{2}(\frac{2arctan(x)(1)}{(1 + (x)^{2})})\\=&\frac{arctan(x)}{x^{2}} - \frac{1}{(x^{2} + 1)x} + \frac{x}{(x^{2} + 1)} - \frac{1}{x} - \frac{arctan(x)}{(x^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!