There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ {x}^{lg(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{lg(x)}\right)}{dx}\\=&({x}^{lg(x)}((\frac{1}{ln{10}(x)})ln(x) + \frac{(lg(x))(1)}{(x)}))\\=&\frac{{x}^{lg(x)}ln(x)}{xln{10}} + \frac{{x}^{lg(x)}lg(x)}{x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ {x}^{(\frac{ln(x)}{ln(10)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{(\frac{ln(x)}{ln(10)})}\right)}{dx}\\=&({x}^{(\frac{ln(x)}{ln(10)})}((\frac{1}{(x)ln(10)} + \frac{ln(x)*-0}{ln^{2}(10)(10)})ln(x) + \frac{(\frac{ln(x)}{ln(10)})(1)}{(x)}))\\=&\frac{2{x}^{(\frac{ln(x)}{ln(10)})}ln(x)}{xln(10)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!