There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (24 + \frac{1000}{(250 + 1000x)} + \frac{1000}{(900 - 2000x)})(x + \frac{4}{5}) + (8 + \frac{1000}{(250 + 1000x)})(\frac{1}{5} - 2x) + 4x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 12x - \frac{1000x}{(1000x + 250)} + \frac{1000x}{(-2000x + 900)} + \frac{800}{(-2000x + 900)} + \frac{1000}{(1000x + 250)} + \frac{104}{5}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 12x - \frac{1000x}{(1000x + 250)} + \frac{1000x}{(-2000x + 900)} + \frac{800}{(-2000x + 900)} + \frac{1000}{(1000x + 250)} + \frac{104}{5}\right)}{dx}\\=&12 - 1000(\frac{-(1000 + 0)}{(1000x + 250)^{2}})x - \frac{1000}{(1000x + 250)} + 1000(\frac{-(-2000 + 0)}{(-2000x + 900)^{2}})x + \frac{1000}{(-2000x + 900)} + 800(\frac{-(-2000 + 0)}{(-2000x + 900)^{2}}) + 1000(\frac{-(1000 + 0)}{(1000x + 250)^{2}}) + 0\\=&\frac{1000000x}{(1000x + 250)^{2}} + \frac{2000000x}{(-2000x + 900)^{2}} + \frac{1600000}{(-2000x + 900)^{2}} - \frac{1000000}{(1000x + 250)^{2}} - \frac{1000}{(1000x + 250)} + \frac{1000}{(-2000x + 900)} + 12\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!