There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 + sqrt(5)d{\frac{1}{10}}^{x}) + \frac{5{d}^{2}{e}^{(sqrt(5)d{\frac{1}{10}}^{x})}}{(3 * {10}^{(2x)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = d{\frac{1}{10}}^{x}sqrt(5) + \frac{5}{3}d^{2}{10}^{(-2x)}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( d{\frac{1}{10}}^{x}sqrt(5) + \frac{5}{3}d^{2}{10}^{(-2x)}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))} + 1\right)}{dx}\\=&d({\frac{1}{10}}^{x}((1)ln(\frac{1}{10}) + \frac{(x)(0)}{(\frac{1}{10})}))sqrt(5) + d{\frac{1}{10}}^{x}*0*\frac{1}{2}*5^{\frac{1}{2}} + \frac{5}{3}d^{2}({10}^{(-2x)}((-2)ln(10) + \frac{(-2x)(0)}{(10)})){e}^{(d{\frac{1}{10}}^{x}sqrt(5))} + \frac{5}{3}d^{2}{10}^{(-2x)}({e}^{(d{\frac{1}{10}}^{x}sqrt(5))}((d({\frac{1}{10}}^{x}((1)ln(\frac{1}{10}) + \frac{(x)(0)}{(\frac{1}{10})}))sqrt(5) + d{\frac{1}{10}}^{x}*0*\frac{1}{2}*5^{\frac{1}{2}})ln(e) + \frac{(d{\frac{1}{10}}^{x}sqrt(5))(0)}{(e)})) + 0\\=&d{\frac{1}{10}}^{x}ln(\frac{1}{10})sqrt(5) + \frac{5d^{3}{\frac{1}{10}}^{(-x)}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))}ln(\frac{1}{10})sqrt(5)}{3} - \frac{10d^{2}{10}^{(-2x)}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))}ln(10)}{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!