There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {10}^{(2y)}((1 + (sqrt(5)d{\frac{1}{10}}^{x}) + (\frac{5{d}^{2}}{(3 * {10}^{2}x)})){e}^{(sqrt(5)d{\frac{1}{10}}^{x})}) + {z}^{2}I\ with\ respect\ to\ y:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = d{\frac{1}{10}}^{x}{10}^{(2y)}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))}sqrt(5) + \frac{\frac{1}{60}d^{2}{10}^{(2y)}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))}}{x} + {10}^{(2y)}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))} + z^{2}I\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( d{\frac{1}{10}}^{x}{10}^{(2y)}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))}sqrt(5) + \frac{\frac{1}{60}d^{2}{10}^{(2y)}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))}}{x} + {10}^{(2y)}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))} + z^{2}I\right)}{dy}\\=&d({\frac{1}{10}}^{x}((0)ln(\frac{1}{10}) + \frac{(x)(0)}{(\frac{1}{10})})){10}^{(2y)}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))}sqrt(5) + d{\frac{1}{10}}^{x}({10}^{(2y)}((2)ln(10) + \frac{(2y)(0)}{(10)})){e}^{(d{\frac{1}{10}}^{x}sqrt(5))}sqrt(5) + d{\frac{1}{10}}^{x}{10}^{(2y)}({e}^{(d{\frac{1}{10}}^{x}sqrt(5))}((d({\frac{1}{10}}^{x}((0)ln(\frac{1}{10}) + \frac{(x)(0)}{(\frac{1}{10})}))sqrt(5) + d{\frac{1}{10}}^{x}*0*\frac{1}{2}*5^{\frac{1}{2}})ln(e) + \frac{(d{\frac{1}{10}}^{x}sqrt(5))(0)}{(e)}))sqrt(5) + d{\frac{1}{10}}^{x}{10}^{(2y)}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))}*0*\frac{1}{2}*5^{\frac{1}{2}} + \frac{\frac{1}{60}d^{2}({10}^{(2y)}((2)ln(10) + \frac{(2y)(0)}{(10)})){e}^{(d{\frac{1}{10}}^{x}sqrt(5))}}{x} + \frac{\frac{1}{60}d^{2}{10}^{(2y)}({e}^{(d{\frac{1}{10}}^{x}sqrt(5))}((d({\frac{1}{10}}^{x}((0)ln(\frac{1}{10}) + \frac{(x)(0)}{(\frac{1}{10})}))sqrt(5) + d{\frac{1}{10}}^{x}*0*\frac{1}{2}*5^{\frac{1}{2}})ln(e) + \frac{(d{\frac{1}{10}}^{x}sqrt(5))(0)}{(e)}))}{x} + ({10}^{(2y)}((2)ln(10) + \frac{(2y)(0)}{(10)})){e}^{(d{\frac{1}{10}}^{x}sqrt(5))} + {10}^{(2y)}({e}^{(d{\frac{1}{10}}^{x}sqrt(5))}((d({\frac{1}{10}}^{x}((0)ln(\frac{1}{10}) + \frac{(x)(0)}{(\frac{1}{10})}))sqrt(5) + d{\frac{1}{10}}^{x}*0*\frac{1}{2}*5^{\frac{1}{2}})ln(e) + \frac{(d{\frac{1}{10}}^{x}sqrt(5))(0)}{(e)})) + 0\\=&2d{10}^{(2y)}{\frac{1}{10}}^{x}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))}ln(10)sqrt(5) + \frac{d^{2}{10}^{(2y)}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))}ln(10)}{30x} + 2 * {10}^{(2y)}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))}ln(10)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!