There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 300 - 20sqrt(\frac{{x}^{2}}{4} + {(10 - \frac{(x - 20)}{2})}^{2}) - 20x + 2xsqrt(\frac{{x}^{2}}{4} + {(10 - \frac{(x - 20)}{2})}^{2}) + \frac{5{x}^{2}}{4} + \frac{(x + 20)}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 20sqrt(\frac{1}{2}x^{2} - 20x + 400) + 2xsqrt(\frac{1}{2}x^{2} - 20x + 400) - \frac{39}{2}x + \frac{5}{4}x^{2} + 310\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 20sqrt(\frac{1}{2}x^{2} - 20x + 400) + 2xsqrt(\frac{1}{2}x^{2} - 20x + 400) - \frac{39}{2}x + \frac{5}{4}x^{2} + 310\right)}{dx}\\=& - \frac{20(\frac{1}{2}*2x - 20 + 0)*\frac{1}{2}}{(\frac{1}{2}x^{2} - 20x + 400)^{\frac{1}{2}}} + 2sqrt(\frac{1}{2}x^{2} - 20x + 400) + \frac{2x(\frac{1}{2}*2x - 20 + 0)*\frac{1}{2}}{(\frac{1}{2}x^{2} - 20x + 400)^{\frac{1}{2}}} - \frac{39}{2} + \frac{5}{4}*2x + 0\\=&\frac{x^{2}}{(\frac{1}{2}x^{2} - 20x + 400)^{\frac{1}{2}}} - \frac{30x}{(\frac{1}{2}x^{2} - 20x + 400)^{\frac{1}{2}}} + 2sqrt(\frac{1}{2}x^{2} - 20x + 400) + \frac{200}{(\frac{1}{2}x^{2} - 20x + 400)^{\frac{1}{2}}} + \frac{5x}{2} - \frac{39}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!