There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (e^{\frac{-(y - {(2x + 2c + 4b)}^{2})(2x + 2c + 2b)}{2}}){\frac{1}{(2d(2x + 2c + 2b))}}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{-yx - yc - yb + 4x^{3} + 12cx^{2} + 20bx^{2} + 12c^{2}x + 40cbx + 32b^{2}x + 20c^{2}b + 32cb^{2} + 4c^{3} + 16b^{3}}}{(4dx + 4cd + 4bd)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{-yx - yc - yb + 4x^{3} + 12cx^{2} + 20bx^{2} + 12c^{2}x + 40cbx + 32b^{2}x + 20c^{2}b + 32cb^{2} + 4c^{3} + 16b^{3}}}{(4dx + 4cd + 4bd)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(4d + 0 + 0)}{(4dx + 4cd + 4bd)^{\frac{3}{2}}})e^{-yx - yc - yb + 4x^{3} + 12cx^{2} + 20bx^{2} + 12c^{2}x + 40cbx + 32b^{2}x + 20c^{2}b + 32cb^{2} + 4c^{3} + 16b^{3}} + \frac{e^{-yx - yc - yb + 4x^{3} + 12cx^{2} + 20bx^{2} + 12c^{2}x + 40cbx + 32b^{2}x + 20c^{2}b + 32cb^{2} + 4c^{3} + 16b^{3}}(-y + 0 + 0 + 4*3x^{2} + 12c*2x + 20b*2x + 12c^{2} + 40cb + 32b^{2} + 0 + 0 + 0 + 0)}{(4dx + 4cd + 4bd)^{\frac{1}{2}}}\\=&\frac{-2de^{-yx - yc - yb + 4x^{3} + 12cx^{2} + 20bx^{2} + 12c^{2}x + 40cbx + 32b^{2}x + 20c^{2}b + 32cb^{2} + 4c^{3} + 16b^{3}}}{(4dx + 4cd + 4bd)^{\frac{3}{2}}} - \frac{ye^{-yx - yc - yb + 4x^{3} + 12cx^{2} + 20bx^{2} + 12c^{2}x + 40cbx + 32b^{2}x + 20c^{2}b + 32cb^{2} + 4c^{3} + 16b^{3}}}{(4dx + 4cd + 4bd)^{\frac{1}{2}}} + \frac{12x^{2}e^{-yx - yc - yb + 4x^{3} + 12cx^{2} + 20bx^{2} + 12c^{2}x + 40cbx + 32b^{2}x + 20c^{2}b + 32cb^{2} + 4c^{3} + 16b^{3}}}{(4dx + 4cd + 4bd)^{\frac{1}{2}}} + \frac{24cxe^{-yx - yc - yb + 4x^{3} + 12cx^{2} + 20bx^{2} + 12c^{2}x + 40cbx + 32b^{2}x + 20c^{2}b + 32cb^{2} + 4c^{3} + 16b^{3}}}{(4dx + 4cd + 4bd)^{\frac{1}{2}}} + \frac{40bxe^{-yx - yc - yb + 4x^{3} + 12cx^{2} + 20bx^{2} + 12c^{2}x + 40cbx + 32b^{2}x + 20c^{2}b + 32cb^{2} + 4c^{3} + 16b^{3}}}{(4dx + 4cd + 4bd)^{\frac{1}{2}}} + \frac{12c^{2}e^{-yx - yc - yb + 4x^{3} + 12cx^{2} + 20bx^{2} + 12c^{2}x + 40cbx + 32b^{2}x + 20c^{2}b + 32cb^{2} + 4c^{3} + 16b^{3}}}{(4dx + 4cd + 4bd)^{\frac{1}{2}}} + \frac{40cbe^{-yx - yc - yb + 4x^{3} + 12cx^{2} + 20bx^{2} + 12c^{2}x + 40cbx + 32b^{2}x + 20c^{2}b + 32cb^{2} + 4c^{3} + 16b^{3}}}{(4dx + 4cd + 4bd)^{\frac{1}{2}}} + \frac{32b^{2}e^{-yx - yc - yb + 4x^{3} + 12cx^{2} + 20bx^{2} + 12c^{2}x + 40cbx + 32b^{2}x + 20c^{2}b + 32cb^{2} + 4c^{3} + 16b^{3}}}{(4dx + 4cd + 4bd)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!