There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(({(\frac{1}{2})}^{(\frac{3x}{2})}) - (\frac{(2x - 1)}{(2x + 1)}))}{(\frac{(2x - 1)}{(2x + 1)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{\frac{1}{2}}^{(\frac{3}{2}x)}}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})} - \frac{2x}{(2x + 1)(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})} + \frac{1}{(2x + 1)(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{\frac{1}{2}}^{(\frac{3}{2}x)}}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})} - \frac{2x}{(2x + 1)(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})} + \frac{1}{(2x + 1)(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})}\right)}{dx}\\=&(\frac{-(2(\frac{-(2 + 0)}{(2x + 1)^{2}})x + \frac{2}{(2x + 1)} - (\frac{-(2 + 0)}{(2x + 1)^{2}}))}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})^{2}}){\frac{1}{2}}^{(\frac{3}{2}x)} + \frac{({\frac{1}{2}}^{(\frac{3}{2}x)}((\frac{3}{2})ln(\frac{1}{2}) + \frac{(\frac{3}{2}x)(0)}{(\frac{1}{2})}))}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})} - \frac{2(\frac{-(2 + 0)}{(2x + 1)^{2}})x}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})} - \frac{2(\frac{-(2(\frac{-(2 + 0)}{(2x + 1)^{2}})x + \frac{2}{(2x + 1)} - (\frac{-(2 + 0)}{(2x + 1)^{2}}))}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})^{2}})x}{(2x + 1)} - \frac{2}{(2x + 1)(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})} + \frac{(\frac{-(2 + 0)}{(2x + 1)^{2}})}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})} + \frac{(\frac{-(2(\frac{-(2 + 0)}{(2x + 1)^{2}})x + \frac{2}{(2x + 1)} - (\frac{-(2 + 0)}{(2x + 1)^{2}}))}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})^{2}})}{(2x + 1)}\\=&\frac{4x{\frac{1}{2}}^{(\frac{3}{2}x)}}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})^{2}(2x + 1)^{2}} - \frac{2 * {\frac{1}{2}}^{(\frac{3}{2}x)}}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})^{2}(2x + 1)} - \frac{2 * {\frac{1}{2}}^{(\frac{3}{2}x)}}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})^{2}(2x + 1)^{2}} + \frac{3 * {\frac{1}{2}}^{(\frac{3}{2}x)}ln(\frac{1}{2})}{2(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})} + \frac{4x}{(2x + 1)^{2}(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})} - \frac{8x^{2}}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})^{2}(2x + 1)^{3}} + \frac{4x}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})^{2}(2x + 1)^{2}} + \frac{8x}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})^{2}(2x + 1)^{3}} - \frac{2}{(2x + 1)^{2}(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})} - \frac{2}{(2x + 1)(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})} - \frac{2}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})^{2}(2x + 1)^{3}} - \frac{2}{(\frac{2x}{(2x + 1)} - \frac{1}{(2x + 1)})^{2}(2x + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!